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Summary

" It is crucial to design neural networks that
feature a self-resizing ability during
inference, while preserving the same level
of performance.
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Figure 3. Visualization of the integral layer evaluation. Continuous weights go through discretization along the variables =", z™"* and
adjusted by an element-wise product with the integration quadrature ().
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Layers in NNs can be considered as
numerical integration

1 mn
/ W(z)S(x)de ~ Zqu(mi)S(mi) =g -5 (1)
" Fully-connected and convolution ’ =0
layers could be considered as where W, = (@W(2o),....q.W(zn)), § =

numerical integration of specific (S@o).--.. 8(xn))s @ = (qo:-- . an) are the weights of
integrals. the integration quadrature, and P* = (xg,...,x,) is the

segment partition that satisfies the following inequality:
0 = 29 < 11 < ... < Tp_1 < x, = 1. The

Utilizing continues weight functions pair (P, §) is called a numerical integration method [16].

instead of tensors leads to the
generation of layers with the desired
number of filters, channels, height, ar
width.

a) b) °

Figure 2. Different integration quadratures: a) left Riemann quadrature, b) right Riemann quadrature, c) trapezoidal quadrature. Riemann
qudratures are first-order methods, while the trapezoidal quadrature is a second-order method. The trapezoidal quadrature computes the
integral more precisely than the Riemann quadratures with a fewer required number of points in the segment partition.
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Fully-connected layer as as integral
operator

Fully-connected operator

" Input and Output functions are represented
by the integrable functions

1
FI(ZEin),Fo(ZEout) FD (.'L‘mlt) _/ Fﬁ (}u om‘ " )I‘I( )d.’l’:in.

0

" The weights of this layer are represented by

an integrable function
Convolution operator:

FW()\, ZCOUta xzn) FG (:I:(rutjxs") _

= Utilizing continues weight functions instead / Fw (X, gout gin. x®) F (:E.;.r.r,j x5 + x° )d;r in gy s
of tensors leads to the generation of layers 0
with the desired number of filters, channels,

height, and width.
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Smooth representation of weights

= Parameterize weight function of integral
layer by a sum of interpolation kernels of
finite support

FW ()\3. CL‘)

T .
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* Use cubic convolutional kernels

" For smooth representation of 2D tensors,
use a linear combination of 2D kernels:
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Figure 4. Visualization of continuous parameter representation and sampling along one dimension. The continuous representation (c) is

the result of a linear combination of a cubic convolutional kernel (a) with interpolation nodes (b). During the forward phase it is discretized
(d) and combined with an integration quadrature.
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Figure 1. Visualization of different channels selection methods without fine-tuning compared with our proposed integral neural networks.

a) ResNet-18 on Cifar10. b) NIN architecture on Cifar10. c) ResNet-18 on ImageNet. d) 4x EDSR on Div2k validation set. By compression
we denote the percentage of deleted parameters.
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Figure 7. Example of 4x image super-resolution with 4 methods: bicubic interpolation, EDSR discrete neural network, EDSR integral
neural network of full-size and pruned by 40%.
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Results

" Our reported results show that the proposed INNs
achieve the same performance with their conventional
discrete counterparts, while being able to preserve
approximately the same performance (2% accuracy loss
for ResNet18 on Image-net) at a high rate (up to 30%)
of structural pruning without fine-tuning, compared to
65% accuracy loss of the conventional pruning methods
under the same conditions”

Dataset Model Discrete INN INN-init
NIN 023 0].8 92.5
Cifar10 VGG-11 91.1 89 .4 9]1.6
Resnet-18 05.3 93.1 95.3
VGG-19 72.3 68.5 72.4
ImageNet ResNet-18 69.8 66.5 70.0
ResNet-50  74.1 71.2 74.1
(a)
Dataset Model Discrete INN INN-init
Sets SRCNN 3x 329 32.6 32.9
EDSR 4x 324 32.2 32.4
Setld SRCNN3x 294 29.0 294
EDSR 4x 28.7 28.2 28.7
B100 SRCNN 3x 268 26.1 26.8
EDSR 4x 276 27.2 27.6
(b)

Table 1. Comparison of INNs with discrete networks on classifi-
cation and image super-resolution tasks for different architectures.
Discrete refers to the conventional DNN, INN refers to the integral
network trained from scratch, while INN-init refers to the integral
network trained according to pipeline A indicated in Fig. 6. Table
(a) indicates accuracy [%] for classification tasks, whereas table

(b) indicates PSNR [dB] for super-resolution tasks.
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