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Generative Modeling

1. Likelihood-based methods,

directly learn the distribution’s probability density via maximum likelihood. (Auto regressive
models , normalizing flow models, energy-based models (EBMs), Variational Auto-Encoders

(VAEs) )

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

A

Encoder
g4 (2[x)

Decoder

Po(x|2)

Flow

f(x)

Inverse

NG

X likelihood-based models either have to use specialized architectures to build a

normalized probability model (e.g., autoregressive models, flow models),

X or use of surrogate losses (e.g., the evidence lower bound used in variational auto-

encoders).
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Generative Modeling

1. Likelihood-based methods,

When using a parameterized model to approximate data distribution we
should make sure that it is normalized.

N
max » logpe(x;).
X fo(x) oJo(x) ¢ ;
> Ppe\X) =
() Zg [ pe(x)dx = 1.
L

Normalizing constant
is generally intractable to compute.
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Generative Modeling

2. Implicit generative methods,

Learn the sampling process, (i.e. generative adversarial networks (GANs), where new samples

from the data distribution are synthesized by transforming a random Gaussian vector with a
neural network).

Discriminator

D(x)

Generator

G(z)

GAN: Adversarial /
training

X Unstable training due to the adversarial training procedure.

Pattern Recoanition Lab talk by Mahdi Naderi. 15 June 2023 5/19



Generative Modeling

3. Score-based methods

Approximate V. logp(x) instead of approximating  p(x)
(Stein) score function Probability density function

E_.f&‘[x}'

ps(x) = —Z

se(x) = Vxlogpe(x) = —Vxfo(x) — Vxlog Zg = —Vix fo(x).
0
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Vx log p(x)
(Stein) score function
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Score function (the vector
field) and density function
(contours) of a mixture of two
Gaussians.
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Is an approach for mathematical modeling of dynamics of molecular systems.

Start from a random sample x, and iterate the following:

This extra term adds a bit of noise to

avoid converging to one point.
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Objective; Fisher divergence

Exact Score  Approximated Score

vx log p«lat-a(x) 39()() Vx ].Dgp(XJ — SQ(X] ObjeCtive
N N NL 7 N R % X4 X\ WAA s N\ VAL Epx) || Vx log p(x) — sg(x) 3]
N A R SeS N & o ) N N L S N NP
~ N\ ¥ 5 —=r = % = ?T’/—“\’\ 7 //\\ Jnknown
S NN\ N PV A VAVAN AV AVA Score matching
SINNN N AN 2 RN s the solution.
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Is everything okay?

Score-based generative modeling procedure
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Major pitfall of naive score-based generative modeling

Objective: Epx[[|Vx log p(x) — se(x) ]3] = f p(x)[Vxlogp(x) — sg(x)|3dx

X Estimated score functions are inaccurate in low density regions
And initial samples are more likely to be in the low density region.

Data density Data scores Estimated scores

This prevents high quality sampling with Langevin dynamics.
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Perturbations with noise

When the noise magnitude is
sufficiently large, it can populate low
data density regions to improve the
accuracy of estimated scores.

How do we choose an appropriate
noise scale?

Data density

Perturbed density

Data scores

Perturbed scores
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Estimated scores

Estimated scores
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Multiple scales of noise perturbations
Standard deviations of added Gaussian noise

x + o2z withz ~ N(0,1).

Noise Conditional Score-Based Model SE{I, 1) »?‘n _ .

\\\\\\\\\

..........

s¢(x,1) ~ Vxlogpg,(x) e &

~~~~~~~~

PP PIIT
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A U-Net with skip connections
is used for Sg(X, 1

Perturbed image with multiple scales of noise.
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Annealed Langevin dynamics.

Algorithm 1 Annealed Langevin dynamics.

Require: {o;}= . ¢, T.
. Initialize x
. fori+— 1to L do
i €07 fo% & rv; is the step size.
fort +— 1to T do
Draw z; ~ N(0,1)
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end for
Xp + Xr
. end for
return X

Generated Samples
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Generative modeling with Stochastic Differential Equations (SDEs)

Generalize the number of noise scales to infinity and perturb data with an SDE

Forward SDE (data — noise)
@ dx = f(x,t)dt + g(t)dw
An SDE with known
hyper parameters converts o L= g B A
data distribution into a 4 :
Gaussian noise. o

| score function
For creating new samples we 2 & ]] _
= |f(x,t) — 1)Vl t U
reverse it with an SDE simmilar ‘(7 dx = [f(x,t) — g°(¢)Vx log p (x)| dt + g(t)dw

to Langevin dynamics. Reverse SDE (noise — data)
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Differential Equations

Ordinary Differential Equation (ODE):
dx

? = f(x t) or dx = f(X, t)dt
( A

X

> 1
t
Analytical _ _
Solution: x(t) = x(0) + /0 f(x,7)dr
Iterative
Numerical x(t + At) =~ x(t) + f(x(t),t)At
Solution:
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Differential Equations

Ordinary Differential Equation (ODE): Stochastic Differential Equation (SDE):

dx dx Wiener Process
S 1x = : — (Gaussian
dt £(x,8) or dx =£(x, {)d! dt ,f(x’ t)_ —|—.a(x: t)_wt e Noise)

drift coefficient diffusion coefficient ,

X

( dx = f(x,t)dt + o(x, t)dw, )

X 4
> 1
t
Analytical _ :
Sg?u{i;ﬁ x(t) = x(0) + /0 f(x,7)dr
Iterative > 1
I*;urlne_rical x(t+ At) ~ x(t) + f(x(t),t)At x(t + At) ~ x(t) + f(x(t), t) At + o (x(t),t)VAt N (0, 1)
olution:
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Forward Diffusion with Stochastic Differential Equation

Forward diffusion process (fixed)

1
Forward Diffusion SDE: dx; = —§ﬁ(t)xt dt ++/B(t) dw;
drift term diffusion term

(pulls towards mode) (injects noise)
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The Generative Reverse Stochastic Differential Equation

Forward Diffusion SDE:

Reverse Generative
Diffusion SDE:

Forward diffusion process (fixed) _

dXt = —%5(t)xt dt + \/ ﬁ(t) dwt

drift term diffusion term
'l 'l

dx; = {;ﬁ(t)xt — B(t)Vx, log qt(xt):| dt + /B(t) dw,

L]

“Score Function”
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Thank you for your attention!
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