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Overview on generative modeling approaches

1. Likelihood-based methods (i.e. VAEs)
2. Implicit generative methods (i.e. GANs)
3.  Score-based methods 

Langevin Dynamics

Score-based generative modeling with stochastic differential equations (SDEs)
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Generative Modeling

1. Likelihood-based methods, 
directly learn the distribution’s probability density  via  maximum likelihood.  (Auto regressive 
models , normalizing flow models, energy-based models (EBMs), Variational Auto-Encoders 
(VAEs) )

✗ likelihood-based models either have to use specialized architectures to build a 
normalized probability model (e.g., autoregressive models, flow models), 

✗ or use of surrogate losses (e.g., the evidence lower bound used in variational auto-
encoders).
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Generative Modeling

1. Likelihood-based methods,

When using a parameterized model to approximate data distribution we 
should make sure that it is normalized. 

Normalizing constant 
is generally intractable to compute.
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Generative Modeling

2. Implicit generative methods, 
Learn the sampling process, (i.e. generative adversarial networks (GANs), where new samples 
from the data distribution are synthesized by transforming a random Gaussian vector with a 
neural network).

✗ Unstable training due to the adversarial training procedure.
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3. Score-based methods

Score function (the vector 
field) and density function 
(contours) of a mixture of two 
Gaussians.

Generative Modeling

Approximate                          instead of approximating           



7 / 19Pattern Recognition Lab talk by Mahdi Naderi, 15 June 2023

Langevin dynamics

x0 xT

This extra term adds a bit of noise to 
avoid converging to one point.

Is an approach for mathematical modeling of dynamics of molecular systems.
Start from a random sample x0 and iterate the following: 
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Objective; Fisher divergence

Exact Score Approximated Score
Objective

Unknown

Score matching
is the solution.
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Score-based generative modeling procedure

Is everything okay?
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Major pitfall of naive score-based generative modeling

Objective: 

✗ Estimated score functions are inaccurate in low density regions 
And initial samples are more likely to be in the low density region.

This prevents high quality sampling with Langevin dynamics.
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Perturbations with noise

When the noise magnitude is 
sufficiently large, it can populate low 
data density regions to improve the 
accuracy of estimated scores.

How do we choose an appropriate 
noise scale?
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Multiple scales of noise perturbations

Perturbed image with multiple scales of noise.

Standard deviations of added Gaussian noise

 Noise Conditional Score-Based Model

A U-Net with skip connections
 is used for
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Annealed Langevin dynamics.

Generated Samples
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Generative modeling with Stochastic Differential Equations (SDEs)

Generalize the number of noise scales to infinity and perturb data with an SDE

An SDE with known 
hyper parameters converts 
data distribution into a 
Gaussian noise.

For creating new samples we 
reverse it with an SDE simmilar 
to Langevin dynamics.
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Differential Equations
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Differential Equations
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Forward Diffusion with Stochastic Differential Equation
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The Generative Reverse Stochastic Differential Equation
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Thank you for your attention!
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