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CNN +Fully connected Network
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CNN +Fully connected Network + Noise!
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CNN + Neural Circuit Policy
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CNN + Neural Circuit Policy + Noise
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Causal navigation of a drone towards the box

NCP ODE-RNN LSTM

Figure 1: Causal navigation from raw visual inputs. Given a
sequence of raw RGB inputs (left) a drone is trained to navigate
towards the red-cube target. We visualize the saliency maps (right)
for each model. Neural circuit policies (Lechner et al., 2020a)
(a specific representation of CT-RNNs) can learn causal relation-
ships (i.e., attend to the red-cube) directly from data while other
models fail to do so. ODE-RNNs (Rubanova et al., 2019b), LSTM
(Hochreiter and Schmidhuber, 1997) and CT- Gated Recurrent
Units (Mozer et al., 2017). Saliency maps are computed by the
visual backprop algorithm (Bojarski et al., 2016).




Main Message

* Differential Equations can form causal structures for navigation tasks

* Continuous-time neural networks (our method) can learn the causal relationships between
the agent and the environment, while RNNs can't.
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Continuous-Time Neural Networks

State
Most of dynamical system, like this dr p
navigation task, ideally can be — x(t).t. 0 x cR
described by differential equations dt f( ( )"' ’ )"' S ’

Neural Network

Continuous-time recurrent neural dx(t x(t
networks (CT-RNNs) ®) = —Q + f(x(t),t,0),
Achieving stability with an extra term, dt T

T: time-constant

1
liquid time-constant networks T [; " f(x(t)? I(t)? b 8)] & X(t) i f(x(t), I(t)’t’ 9) © A,

(LTCs) (Hasani et al., 2021b)
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Methodology Inputs to the system Hidden states

Assume the Dynamic Causal Model to be: dx/dt = (A + I(t)B)x(t) + CI(t)
p)
_OF B= 8F:O=8F |
ox(t) l1=0 ox(t)0I(t) OI(t) lz=0

* Matrix A is a fixed internal coupling of the system
« Matrix B controls the impact of the inputs on the the coupling sensitivity
* Matrix C embodies the external inputs’ influence on the state of the system

Let f be an activation function such as tanh: f(x(t),1(t),t,0) = tanh(W,x + WI + b)
O*F

sxarg ~ VU O W o (A a) +1]
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Table 4: Closed-loop evaluation of trained policies on various navigation and interaction tasks. Agents
and policies are reinitialized randomly at the beginning of each trial (n=50). Values correspond to

success rates (higher is better).

\ Static Target | Chasing | Hiking
Model | Clear Fog Light Rain Heavy Rain Occlusion | Clear Fog Light Rain Heavy Rain | Clear
CNN 36% 6% 32% 2% 4% 50% 42% 54% 28% 0%
LSTM 24% 22% 22% 4% 20% 66% 62% 56% 44% 2%
ODE-RNN | 10% | 2% 24% 52% 42% 62% 44% 4%
CT-GRU 40% 8% 60% 32% 28% 38% 36% 48% 42% 0%
NCP (ours) | 48% 40% 52% 60% 32% 78 % 52% 84 % 54 % 30%
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Reference links

1. Causal Navigation by Continuous-time Neural Networks
2. CAUSALITY FOR MACHINE LEARNING

3. Dynamic causal modelling

4. Liquid Time-constant Networks

5. https://slideslive.com/38968213/causal-navigation-by-continuoustime-neural-netwo
rks?ref=recommended

6. https://www.youtube.com/watch?v=IlliqYiRhMU&list=WL&index=3&ab_channel=MI
TCBMM
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https://arxiv.org/pdf/1911.10500.pdf
https://www.sciencedirect.com/science/article/pii/S1053811903002027?ref=pdf_download&fr=RR-2&rr=7a185fb60e400e60
https://arxiv.org/abs/2006.04439
https://slideslive.com/38968213/causal-navigation-by-continuoustime-neural-networks?ref=recommended
https://slideslive.com/38968213/causal-navigation-by-continuoustime-neural-networks?ref=recommended
https://www.youtube.com/watch?v=IlliqYiRhMU&list=WL&index=3&ab_channel=MITCBMM
https://www.youtube.com/watch?v=IlliqYiRhMU&list=WL&index=3&ab_channel=MITCBMM
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