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Main Message

" Necessity of having mappings between function spaces
" Introduction to a line of research called “"Neural Operators”

" Introduction to Fourier Neural Operators
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Mapping between function spaces is important!

*  Most real-world phenomena are governed by Partial Differential
Equations (PDEs), and to model or to predict them we need to

solve these PDEs.

* To solve PDEs we need to provide them boundary and initial
conditions. The initial condition and boundary conditions are
functions, and the prediction is also a function.

For example, in the case of using Navier Stokes
for Weather Forecasting, the current
measurements of the state of atmosphere are our
initial conditions and the characteristics of the
land and an oceans is our boundary condition.

/ Examples of real-world PDEs \

Wave Equation:
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Schrédinger equation in quantum-mechanical system:
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Navier-Stokes equations for describing the motion
of fluids:
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Mapping between function spaces is important!

z
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Currently, we use numerical methods to solve PDEs, and the
solution is unique for each boundary and initial condition.

Often it takes a lot of effort to solve PDEs and even after
simulation, it cannot be used for other predictions or simulations.

This mapping is done by our PDEs how to do it with Neural?

And to do that, a proper NN architecture is required plus a
training data set of input functions and output functions!

So, this is what motivated this line of research to develop instant
mapping from these functions to the solution function.
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Neural Networks vs Neural Operators
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Neural networks
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Neural Networks vs Neural Operators

Neural operators
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Fourier Neural Operators
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(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel space

by a neural network P. 2. Apply four layers of integral operators and activation functions. 3. Project back to

the target dimension by a neural network (. Output u. (b) Fourier layers: Start from input v. On top: apply
the Fourier transform /7 a linear transtorm R on the lower Fourier modes and filters out the higher modes;

then apply the inverse Fourier transform F !, On the bottom: apply a local linear transform W.
Figure 2: top: The architecture of the neural operators; bottom: Fourier layer.
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Fourier Neural Operators

(a) Burger’s Equation
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(b) Darcy Flow
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(c) Navier-Stokes
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Left: benchmarks on Burgers equation; Mid: benchmarks on Darcy Flow for different resolutions; Right: the
learning curves on Navier-Stokes v = le—3 with different benchmarks. Train and test on the same resolution.

For acronyms, see Section details in Tables

Figure 3: Benchmark on Burger’s equation, Darcy Flow, and Navier-Stokes
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Navier-Stokes

Initial Condition  Ground Truth Prediction
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Takeaways

* Itis important to map between function spaces!

*  Neural Networks are finite dimensional mappings, and Neural Operators are infinite dimensional
mappings (of function spaces)!

*  “Fourier” Neural Operators?

* Neural Operators relate to Transformers?

Resources and Links

[1]. Neural Operator

[2]. https://zongyi-li.github.io/neural-operator/Neural-Operator-CS159-0503-2022.pdf
[3]. https://github.com/zongyi-li/fourier_neural_operator
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