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An analogy!
Kepler’s Elliptical Orbits

Satum »’,’——"—'

Kepler developed a data-driven model for planetary
motion, resulting in his famous elliptic orbits. However, /
this model did not explain the fundamental dynamic
relationships that give rise to planetary orbits, or
provide a model for how these bodies react when
perturbed.

Newton, in contrast, discovered a dynamic relationship
between momentum and energy that described the

underlying processes responsible for these elliptic m1m2
orbits. This dynamic model may be generalized to F —

predict behavior in regimes where no data were 1"2
collected.
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Main Message

e Extracting governing equations from data is important

* Understanding patterns in vast multimodal data that are beyond the ability of humans
to grasp!

 Governing equations can be discovered even from noisy measurement data.

e Our assumption about the structure of the model is that there are only a few
important terms that govern the dynamics, so that the equations are sparse in the
space of possible functions; this assumption holds for many physical systems in an
appropriate basis.
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Sparse ldentification of Nonlinear Dynamics (SINDy)

state
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Here, we consider dynamical systems (31) of the form X (t1) xi(t)  xa(t) Xn(11)
d X' (t2) xi(t2) x(t) o oxe) |
Ex{r) =f(x(t)). (1] X= : = : : . .| Htime
The vector x(7) € R" denotes the state of a system at time ¢, and _KT(fm) i | Xi(tm) X2(tm)  Xn(tm) |
the function f(x(t)) represents the dynamic constraints that de-
fine the equations of motion of the system, such as Newton’s Tty Tt o (t v (B
second law. Later, the dynamics will be generalized to include )fritl) Jfl EII% %EEII% Jf" EII%
parameterization, time dependence, and forcing. X = X (52) _ X182 X2\02 Xnl\l2
_iT(Im) i | X1 (Im) iz(fm) A (fm) J
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Sparse ldentification of Nonlinear Dynamics (SINDy)

Next, we construct a library ©(X) consisting of candidate non-
linear functions of the columns of X. For example, ©(X) may
consist of constant, polynomial, and trigonometric terms:

OX)=[1 X X X% - sin(X) cos(X) - |. [2]

Each column of ©(X) represents a candidate function for the
right-hand side of Eq. 1. There is tremendous freedom in choos-
ing the entries in this matrix of nonlinearities. Because we be-
lieve that only a few of these nonlinearities are active in each row
of f, we may set up a sparse regression problem to determine the
sparse vectors of coefficients Z=[§ & -+ £ | that determine
which nonlinearities are active:

X=0(X)2. [3]

/ \\ A Unknown,

a matrix of sparse vectors of

ivati ith ti coefficients
Derivative of X with time A matrix of candidate functions

5
TUDelft 5/8



example: Chaotic Lorenz System
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Lorenz system is a set of ordinary differential equations is
notable for having chaotic solutions for certain parameter
values and initial conditions. In particular, the Lorenz

attractor is a set of chaotic solutions of the Lorenz system.

equations:
dx
dt

Y = o)
- — (P —2) 4,

:O'(y—ﬂ’:)?

dz

Ezmy—ﬁz.

A sample solution in the Lorenz attractor

when:

p=28,0=10,and 3 =8/3
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example: Chaotic Lorenz System

with trivial weights
the matrix becomes
sparse.

au

L True Lorenz System iy i, lzyzateyrzy® P L&l 1 ['xi_l'o] ['xi_Z'D] [’xi_3'D]
i = o(y—uz) ,, 5‘3:33353 if;‘ljiiigi E°%
i _ (CR A
The unknown matrix of i1 (= + af ai 4
weights ~ can  be o i HE 9B o
com p uted by SOIV' n g L ] Sparse Coefficients of Dynamics
the Linear system of = E
equation. | | _ _ :
-4 O(X) /
Resulting matrix wont IIL. Identified System
be as clear as this 5 e % 4 e = B 2. om E i = O(x")&
example, but by § = Ok
eleminating functions } |
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II. Sparse Regression to Solve for Active Terms in the Dynamics

Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives X; the assumption of having Xis relaxed later. Next, a library of nonlinear functions of the states, ®(X), is constructed. This nonlinear feature
4 library is used to find the fewest terms needed to satisfy X =®(X)Z. The few entries in the vectors of E, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are =10, =8/3, p= 28, (X, Vo, Zo)" =(-8,7,27)". The trajectory on the Lorenz attractor is
TU Delft colored by the adaptive time step required, with red indicating a smaller time step. 7 / 8



Discussion

e [t was assumed that a few important terms that govern the dynamics, and there are no
other differential terms inside equations.

 Open question, how to know if differential terms are present in the governing
dynamics of a dataset?
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